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In the last and current decade, the Wake County school district has reassigned numerous students

to schools, moving up to five percent of the student population in any given year.  Before 2000,

the explicit goal was balancing schools' racial composition; after 2000, it was balancing schools'

income composition.  Throughout, finding space for the area's rapidly expanding student

population was the most important concern.  The reassignments generate a very large number of

natural experiments in which students experience new peers in the classroom.  As a matter of

policy, exposure to an "experiment" should have been and actually appears to have been random

conditional on a student's fixed characteristics such as race and income.  Using panel data on

students before and after they experience policy-induced changes in peers, we explore which

models of peer effects explain the data.  Our results reject the popular Linear-in-Means and Single-

Crossing models as standalone models of peer effects.  We find support for the Boutique and

Focus models of peer effects, as well as for a generic monotonicity property by which a higher

achieving peer is better for a student's own achievement all else equal.  Our results indicate that,

when we properly account for the effects of peers' achievement, peers' race, ethnicity, income, and

parental education have no or at most very slight effects.  Thus, Wake County's numerous

reassignments would mainly have affected achievement through the redistribution of lower and

higher-achieving peers.

* This paper has its origins in Gretchen Weingarth's Harvard University senior honor thesis (2005), cited

within.  As early as 2003, Gretchen Weingarth recognized the useful variation generated by Wake

County's reassignments.  The thesis and this paper share the first half of the title, "Taking Race Out of hte

Equation," which is quotation from Silberman (2003), cited within.  Otherwise, the thesis and this paper

are quite distinct.  The authors are very grateful to the North Carolina Education Research Data Center for

provision of and a great deal of help with data.  The corresponding author is Caroline Hoxby, Department

of Economics, Harvard University, Cambridge, Massachusetts 02138.
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I.  Peer Experiments in Wake County, North Carolina

Starting in the 2000-01 school year, the Wake County public school district switched from a

desegregation plan that attempted to balance its schools on the basis of race to a plan that attempted to

balance schools on the basis of family income.  (Family income was measured by the percentage of

students participating in the free or reduced-price lunch program.)  Many students were reassigned to

schools as a result.  This was not Wake County's first venture into reassignment, however.  The district

had actively engaged in reassignment throughout the 1990s largely because growth in the county's

population meant that previous assignment plans were continually outdated.  Throughout the 1990s and

the current decade, up to five percent of Wake County students were reassigned in any given year.  The

reassignments changed the peer composition of many school cohorts (a cohort is the group of students

who are enrolled in the same grade in the same school in the same school year) and consequently the peer

composition of many classrooms.  We can identify changes caused by the reassignments, as opposed to

potentially endogenous variation caused by a family's relocation, a student's switching to a private school,

and similar phenomena.  As a matter of policy, being exposed to reassignment was supposed to be (and

appears actually to have been) quite random conditional on a student's fixed characteristics such as race,

income, and location.  We observe students before and after each classroom change so that we can

condition on students' fixed characteristics (fixed effects).  In short, Wake County generates thousands of

useful reassignment "experiments" and a unique opportunity to learn about how a students' achievement

is affected by the peer composition of his class.

Our primary goal is to learn much more about the structure of peer effects work than has been

learned previously.  As a rule, it is a difficult empirical challenge to credibly identify the mere existence

of peer effects, and–in consequence–most researchers have focused their attention on establishing

existence.  They typically use highly restrictive econometric specifications, most especially the Linear-in-
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  See Manski (1993), Hoxby (2000), Brock and Durlauf (2001), and Graham (2004) for more discussion1

of the difficulties researchers typically encounter in the econometric identification of peer effects.  The

literature on peer effects is too dense for a thorough listing of good, recent empirical studies, but a partial

list includes Sacerdote (2001), Stinebrickner and Stinebrickner (2001), Boozer and Cacciola (2001),

Angrist and Lang (2002), Zimmerman (2003), Kremer and Levy (2003), Winston and Zimmerman

(2004), Betts and Zau (2004), Carrell, Malmstrom, and West (2005).  The papers most closely related to

this one are Samms (2004) and Vigdor and Nechyba (2004).

  For a variety of different specifications (or implicit specifications) of peer effects, see Epple, Sieg, and2

Romano (2003), Kremer (1993), Nechyba (1996), Benabou (1996), Lazear (2001).

Means model.   (Most researchers are well aware of the benefit of identifying the structure of peer effects1

but simply find it difficult to do with the data available.)  The Linear-in-Means model assumes that each

student has the same effect on each other student (a homogeneous treatment effect).  It also assumes that a

single student whose achievement raises a class's mean achievement by two points has precisely the same

effect as several students whose combined achievement raises the class's mean by two points (that is, all

effects operate through one moment: the mean of peers).   The focus on establishing existence and the

Linear-in-Means model in particular have been problematic because neither educational policy-makers

nor economists would care much about peer effects if they merely existed and were linear in means.  If

peer effects were linear in means, then regardless of how peers were arranged, society would have the

same average level of outcomes.  Moreover, most applications of peer effects–school desegregation,

school choice, college choice, urban economics–need to have non-linear peer effects to generate results

that are interesting and that mimic the facts.  For instance, several existing models generate stratification

(segregation along the lines of ability) by assuming that peer effects exhibit single crossing–that is, a high

achieving peer has more effect on another high achieving peer than she has on a low achieving peer. 

Other models assume that the peers who matter most are "bad apples" whose behavior disrupts everyone

and triggers disruptive behavior from children who would otherwise be attentive.   The structure of peer2

effects matters greatly.

Classrooms are a good environment for the identification of this structure because (a) outcomes

are reasonably well-defined, (b) students' incoming achievement and other characteristics (race, ethnicity,
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sex, poverty, native language, and disability) are recorded, and (c) classmates are actually forced to spend

a large amount of time together.  The last feature of classrooms is important because it means that if we

can locate exogenous variation in classroom composition, we have an experiment that can plausibly show

the non-existence of peer effects.  If we find that a student is unaffected when forced to spend 6 hours a

day, 180 days a year in the company of another student, we can confidently assert that the latter student

has had a small or no peer effect.  In contrast, if we find that a person is unaffected when we merely put

another person in his general vicinity (as might occur in a neighborhood, college, or workplace), we are

not sure whether peer effects are weak or whether the two simply had no occasion to interact.  Much of

this paper is dedicated to our narrowing in on the structure of peer effects that best explains the data.

In this task, we are aided by certain features of the Wake County reassignments.  Because the

district needed to accommodate a rapidly growing school population, its staff necessarily had to weight

many factors (school construction, bus routes, school overcrowding, and so on) in addition to race or

income when deciding whether to reassign a neighborhood's children or move reassigned children into a

particular school.  However, they were otherwise supposed to make decisions in a very even-handed way.

It appears that this exactly what they did.  While students of different races and incomes had different

probabilities of experiencing reassignment, when we condition on students' fixed characteristics, the

actual event of experiencing reassignment appears to have been random.  This is important for our

identification strategy, in which we condition on student fixed effects and treat reassignment-based (and

only reassignment-based) changes in peers as exogenous.  Just as importantly, Wake County's procedures

meant that students with the same characteristics were exposed to reassignments that varied substantially. 

The more varied were the changes in classroom composition, the more able we are to identify the

structure of peer effects.

Our second goal in this paper is discovering whether desegregation on the basis of family income

has different effects than racial desegregation.  That is, we wish to evaluate Wake County's policy change,

albeit through the indirect method of carefully identifying race-based and income-based peer effects.  For
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  See Ogletree (2004) for a review of the basis of the Brown versus Board of Education decision.3

instance, we are able to answers questions such as, "Would we expect student X to have higher or lower

achievement if we removed one non-poor black student from his class and inserted a poor white student

whose achievement was equal to that of the student who was removed?"   Put another way, we–by

simultaneously estimating achievement-based, race-based, and income-based peer effects–determine

whether apparent peer effects are truly raced-based or income-based, or are simply generated by the

correlation of race and income with achievement.

Why is this distinction important?  On a practical level, policy makers need to know the answer if

they are to design desegregation plans that maximize achievement gains.  On a deeper level, the answers

helps us to understand the fundamental impetus behind desegregation.  From the Brown versus Board of

Education decision onwards, desegregation plans have been based on one of two arguments.   The first is3

that, regardless of claims about "separate but equal" schools, no district will provide truly equal resources

to segregated schools.  The argument is, essentially, that policy makers will be willing to deprive schools

that serve minority students to enrich schools that serve non-minority students so long as only minority

students experience the deprivation.  This argument depends on highly indirect peer effects that operate

over a long period of time.   The second argument is that the presence of non-minority students in the

classroom has a direct, salutary effect on minority students.  For instance, in the original Brown decision,

the Court placed significant weight on evidence that, when segregated, minority students became

depressed about their future prospects and therefore failed to achieve.  As it turns out, the evidence on

which the Court relied was not credible by modern social scientific standards.  This is not to say that the

second argument is wrong, but simply to say that it is a theory based mainly on personal introspection. 

Personal introspective is by no means invalid, but it can provide poor policy guidance.  For instance, it is

unclear whether personal introspection is well-suited to distinguishing between achievement-based, race-

based, and income-based peer effects.
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In the next section, we briefly review popular models of peer effects.  We describe Wake

County's policy change and our data in Section III.  In Section IV, we narrow in on the specification of

achievement-based peer effects that best explains the data.  This allows us to decide what models of peer

effects are supported by the evidence.  We investigate peer effects based on race, income, and other

student characteristics in Section V .  We also discuss the implications of our results for Wake County's

policy change.  In the final section, we conclude.

II.  How Might Peer Effects Work?

The Linear-in-Means model proposes that a student's outcome is a linear function of the mean of

his peers' outcome.  The main appeal of the model is convenience:  it can be estimated even when the

amount of variation in the data is barely sufficient or when data are available only at an aggregate level. 

In addition, researchers appear to like the fact that the Linear-in-Means model treats all achievement

symmetrically–almost as though the Linear-in-Means model were agnostic about how peer effects work. 

Agnostic, however, is what the Linear-in-Means model is not: it actually imposes strict assumptions about

the forms peer effects take.  Moreover, the Linear-in-Means model has the unappealing property that, if it

were the true model, no form of segregation would be stable because all allocations of peers are equally

beneficial in aggregate.  Since certain forms of segregation arise routinely (think of selective college

admissions), they are either due to a form of peer effects other than Linear-in-Means or they are due to

institutional factors that are strikingly persistent and consistent (an unappealing assumption).

A formalization of the Linear-in-Means model that is appropriate for our application is:

(1)

where   is the outcome of student i in classroom j in grade g in school year t;  denotes the

mean of his classmates' initial outcomes (from the end of the previous period); and  denotes the

mean of his classmates' characteristics (such as race, gender, and income).  The  characteristics are
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here assumed to be fixed over time, but could be time-varying without loss of generality.  Note that the

means on the right-hand side of the equation exclude the student himself–thus the " ".   The equation

includes a full set of individual student fixed effects and a full set of grade-by-school year fixed effects. 

We discuss estimation of the model below.

Most other models of peer effects are defined on the basis of behavior, as opposed to the

specification of an equation.  Some popular ones are as follows.

The Bad Apple model of peer effects suggests that a presence of a single student with poor

outcomes spoils the outcomes of many other students.  If we find that an increase in the number of

bottom-achieving students has a disproportionate negative effect on the achievement of students

throughout the entirety of the distribution, we shall view this as evidence for the Bad Apple model.  (By

"disproportionate," we mean an effect substantially larger than the Linear-in-Means model would

suggest.)

The Shining Light model of peer effects is the opposite of the Bad Apple model.  It suggests that

a single student with sterling outcomes can inspire all others to raise their achievement.  If we see that an

increase in the number of top-achievers has a disproportionate positive effect on the achievement of all

other students, we shall take it as support of the Shining Light model.

A model implicit in some recent behavioral work is the Invidious Comparison model.  In it, the

advent of a higher achieving peer depresses the performance of everyone who is pushed to a lower rank in

the local distribution (presumably by depressing their self-esteem).  The advent of a lower achieving peer

has the opposite effect:  boosting the performance of all those who are pushed to a higher local rank.

The Boutique model of peer effects suggests that a student will have higher achievement

whenever she is surrounded by peer with similar characteristics.  This is essentially a model in which

students do best when the environment is made to cater to their type.  For instance, in schools, the

Boutique model  might mean that teachers organize lessons and materials around the learning style of a

student if there is a critical mass of his type.
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The Focus model of peer effects is closely related to the Boutique model but suggests that peer

homogeneity is good for a student's learning, even if the student himself is not part of the group of

homogeneous students.  In this model, diversity is inherently disabling, perhaps because tasks cannot be

well targeted to all students' needs. A bimodal distribution of peers may especially disabling because it

may generate "schizophrenia" in the organization of work.

The opposite of the Focus model is the Rainbow model, so called because it suggests that all

students are best off when forced to deal with all other types of students.  The logic of the Rainbow model

is that students learn the answer to a question more deeply when they see it approached from a variety of

angles.

If we see that making a classroom more homogeneous is good for all students (even those who

are consequently more anomalous), we shall take it as evidence for the Focus model.  Naturally, we shall

look upon opposite findings as evidence for the Rainbow model.  If increased homogeneity only benefits

students near the type that is becoming more prevalent, we shall take it as evidence of the boutique

model. 

We have already mentioned the Single Crossing model, which is probably less motivated by

observed behavior than by the fact that it generates self-segregation in a mathematically elegant way.  In

the Single Crossing model, students with a higher initial level of the outcome are (weakly) more sensitive

to their peers' having a high level of the outcome.  Thus, high achieving students benefit more and low

achieving students benefit less from the presence of additional high achieving students.  We can

differentiate between Single Crossing and the Boutique model because, in the former, low achieving

students benefit hardly at all from the presence of other low achieving students whereas, in the latter, they

benefit substantially.

The Subculture model is, in some ways, the logical opposite of the Boutique model but it is likely

only to affect certain minorities (achievement minorities, racial minorities, and so on).  In the Subculture

model, the majority type remains supportive of a minority person, such as a high achieving student or a
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  Manski (1993) coined the term "reflection problem," but it is also known as the "the social multiplier"4

(see Glaeser, Sacerdote, and Scheinkman, 2003). 

black student, so long as he is relatively isolated.  When, however, minority students become prevalent

enough to form a critical mass, the majority type rejects them–perhaps because minority sub-culture

threatens the environment that works best for the majority.  The rejection could also be more benign.  The

majority may be willing to make sufficient effort to include a few minority members but unwilling to

make the effort to include numerous minority members and also unwilling to include some minority

students while rejecting others.

III.  The Econometric Identification of Peer Effects in Wake County

To see, even in advance of the policy details, how Wake Country's experiments will help us

identify peer effects, consider the Linear-in-Means model.  The problems–self-selection, reflection, and

measurement error/omitted variables–that plague it also plague other models.   The core of the model is:4

(2) .

We have not written out the grade-by-school year fixed effects because they are not interesting: they are

included mainly to eliminate nuisance variation in measured outcomes.  Test scoring varies somewhat

from grade to grade and from year to year, and they soak up the resulting, uninformative variation.

Self-selection is the problem that occurs when a student who is predictably going to have a

certain outcome  seeks out or is assigned to certain companions because of their predicted outcomes. 

Their outcomes will then appear to cause the student's own outcome when the causality is actually the

other way around.  An obvious example is students in a cohort being divided into classes based on

teachers' assessment of their likely achievement growth.  Students who seem likely to learn quickly are

put into one class and others who seem likely to learn slowly are put into another class.   (A cohort is a

grade-by-school year-by-school cell, whereas a class is a grade-by-school year-by-classroom cell.  Most
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  If Linear-in-Means model holds, one can solve for the multiplier generated by the reflection problem. 5

Unfortunately, each model of peer effects implies a different multiplier. Thus, unless one is interested in

the Linear-in-Means model per se, there is little point in computing the multiplier associated with each

estimated coefficient. 

but not all cohorts have multiple classes.)

Reflection is the problem that occurs because, if peers influence a student, he also influences

them.  Thus, a student's own behavior is embodied in the outcomes of his peers.  Because the mean

 deliberately excludes student i's own outcome, the equation already eliminates the purely

mechanical incorporation of a student's own outcome into the mean.  Nevertheless, the student's own

outcome will make its way into the mean through his peers' outcomes.  This is simply because each of

them has an equation parallel to his own, with their last period's test score being a function of the students'

(previous) test score.   A concrete example is a mischievous student who induces other students to5

participate in his mischief.  Even if he is the sole initial instigator (the child without whom no mischief

would ever have occurred), he will have produced a crop of mischievous peers after a few grades.  It

would be hard for an outside observer to identify him as the instigator because he will appear to be part of

a rascally gang.

The measurement error or omitted variables problem occurs because a determinant of the

student's outcome is either measured poorly or omitted altogether, thus constituting part of .  If peers'

characteristics are correlated with the measurement error or omitted variable, they will appear to cause the

student's outcomes when they are really just proxying for his own characteristics.  For instance, a

student's being poor is measured imperfectly by his participation in the free lunch program.  If poor

families tend to live together, then a child is quite likely to be poor himself if he attends a school with

many free-lunch participants even if he himself does not participate.

Equation (2) includes student fixed effects, and these are crucial because the set of identification

strategies that are credible conditional on student fixed effects is quite different from the set of strategies

that are credible without student fixed effects.  With student fixed effects, we need only find variation in a
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student's classroom that is plausibly orthogonal to time-varying determinants of a student's achievement. 

The variation need not be orthogonal to time-constant determinants of the student's achievement, even if

we cannot measure them.  Consider:  we compare a student before and after the composition of his class

changes (the "treatment" changes).  For our purposes, it is fine if the probability of experiencing a change

in treatment is a function of the student's initial achievement and other fixed characteristics.  What is not

fine is if, conditional on this probability, the event of experiencing a change in treatment is related to

time-varying factors that will affect his future achievement.  Readers familiar with the logic behind the

propensity score will recognize this reasoning.  We can condition on the probability of selection into

treatment, so what we require for identification is that the event of treatment is random conditional on the

probability of selection.  We believe, based both on our reading of Wake County policies and on

empirical analysis of our data, that this requirement is fulfilled.  That is, while the probability of being

reassigned or experiencing a reassigned peer was not random in Wake County, it was based on relatively

fixed student characteristics such as race and income.  For a given set of fixed characteristics (for a given

probability of being reassigned), the actual reassignment event was apparently arbitrarily distributed.

Below, we will discuss this point at length.  For now, let us suppose that it is correct.  How can

we estimate equation (1) consistently?  First, note that the student fixed effect absorbs all of student i's

time-constant determinants of achievement.  Thus, we need not worry about such determinants being

mismeasured or omitted.

Second, consider the formation of simulated instrumental variables for .  If the policy-

generated variation is as argued, then we want the simulated instruments to reflect reassignment-driven

changes in the peer composition of a student's class.  However, the simulated instruments must not reflect

potentially endogenous student moves (such as occur when a family changes its residence or enrolls a

child in private school).  The simulated instruments must also not reflect assignment to classes within the

cohort since such assignment (usually done by principals but influenced by teachers and parents) may be

non-random.  Define a student's "simulated instrument cohort" to be the group of students who would be
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    The treatment-on-the-treated effect is a consistent estimate of the difference between treated and6

untreated compliers.  In our application, compliers are students who experience at least as much of the

new type of peer as they did before the new arrival of the reassigned peers.

  To see this, suppose that a student is randomly assigned to experience some new peers in his simulated7

instrument cohort.  Over time, he influences their achievement and their altered outcomes would used

next period to compute simulated instruments if we did not based the instruments on initial achievement.

in his cohort if reassignments are allowed but all potentially endogenous student movement is disallowed. 

Compute means based on the simulated instrument cohort, and use the resulting variables, , as

instruments for means based on a student's actual class.  Note that s indexes the simulated cohort and

displaces j, which indexes classrooms.  The superscript "SimCo" is just a forcible reminder that the cohort

is the simulated, not actual, one.

If a student's cohort does not experience policy-based reassignments, such instruments will be

constant over time, will be soaked up by his individual fixed effect, and will contribute nothing to the

estimates.  This is appropriate because the student has experienced no credibly exogenous variation in

peers.  Note that the instrument is at the (simulated) cohort level, not the class level.  Thus, endogenous

assignment within the cohort does not affect the estimates.  Formally, the intention to treat varies only at

the simulated cohort level, so the instrumental variables estimate is a treatment-on-the-treated effect that

only reflects variation at the cohort level.  6

Third, consider the formation of simulated instrumental variables for .  We can proceed

along similar lines to form the instruments except for the fact that outcomes change over time and these

changes may embody the reflection problem.   We fix this problem simply by forming the instrument7

based on the initial achievement of each peer.  If there is no change in peers in the simulated instrument

cohort, there is no variation in the instrument and it is soaked up by the student's fixed effect.  If the

simulated instrument cohort changes because of reassignment, the reflection problem does not occur

because the reassigned peers had not experienced the student when their initial achievement was

determined.
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  This is because the source of exogenous variation is at the simulated cohort level.8

  Most famously, in 1957, black students were assigned to a predominately white school in Little Rock,9

Arkansas.  The National Guard was pressed into service to ensure the students' safety.

  See Reber (forthcoming) and Clotfelter (2004) for a review of the evidence on court-ordered10

desegregation.  Interestingly, Cascio, Gordon, Lewis, and Reber (2005) show that much desegregation

was not caused by court orders but rather by the federal government's tying Title I funds to desegregation

Summing up, our first and second stage equations for estimating the Linear-in-Means model are:

(3)

,

where  is the period in which we initially observe the student.  Notice the double error terms in each

equation.  These remind us that the equations must be estimated with robust standard errors clustered at

the level of simulated instrument cohort.8

We have described our identification strategy using the Linear-in-Means model for completeness,

but in fact we shall use a large number of moments other than means.  The strategy is, however, precisely

parallel for each of the moments in question.

IV.  Wake County's Reassignment Plans

In 1954, the U.S. Supreme Court called for the end of racial segregation in schools in its Brown

versus Board of Education decision.  Integration efforts through the first half of the 1960’s remained

weak, in part due to resistance.   In the second half of the 1960s, however, a combination of forceful court9

decisions–for instance, Green versus New Kent County, Virginia–and financial incentives from the federal

government caused school districts to begin reassignment, busing, and similar involuntary methods of

balancing the racial composition of schools.10
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efforts.  A consequence of the Civil Rights Act and the Elementary Education Act of 1965 was that

Southern schools stood to gain substantial funds if they complied with federal guidelines on

desegregation.

  Specifically, Wake County schools were supposed have black shares between 15 and 45 percent, a11

range centered on the 30 percent black share in the county's schools when desegregation began.  For

much of the detail on Wake County's policy, we rely on Weingarth (2005) and Silberman (2002).

 Specifically, the Court ruled that legislature could be conscious of a student's race when making12

reassignment decisions, but that race could not be the "dominant and controlling consideration."

Like many other Southern districts, Wake County began substantial efforts at racial desegregation

in 1965, shortly after the Elementary Education Act made the district choose between receiving

substantial new federal funds or staying segregated.  Wake County implemented a race-based

reassignment plan, the goal of which was that each school should reflect the racial composition of the

county.   District administrators divided the county into geographic nodes (there are currently about 700,11

each with an average of 150 students).  The children in each node all follow the same reassignment plan,

if any.  Thus, the characteristics of an individual student are never a factor in his being reassigned. 

Throughout the 1990s, Wake County selected nodes for reassignment to balance schools' racial

composition and for other reasons described below.  As many as 5,500 students, or 5 percent of the

district's students, were reassigned in a single year.

In 1994, the U.S. Supreme court ruled that the practice of desegregating schools based solely on

race fell outside of the Equal Protection clause of the Fourteenth Amendment.  In Shaw versus Hunt, a

1996 ruling, the Court stated that race could not be the “dominant and controlling consideration” in

making reassignment decisions.   Most dramatically, in 1999 (Tuttle versus Arlington County School12

Board), the Courts disallowed school districts from considering race in their decision to assign students to

schools.

By the late 1990s, Wake County's Board of Education believed that they had to change their

method of desegregation or risk legal challenges of their own.  Starting with the 2000-01 school year,

they switched to reassigning students on the basis of family income rather than race.  The goal of the new
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  Wake County Government, education statistics internet site.13

http://www.wakegov.com/county/planning/demographic/dd_Education.htm

  The Wake County Public Schools Office of Growth and Management lists the following factors, in14

order, as the basis for reassignment: the opening of new schools; crowding at existing schools; the

expansion of year-round schools; construction on, improvements to, and expansion of existing school

facilities; transportation and travel time and distance; the transportation required to attend a magnet

school; diversity indicators; the percentage of students who qualify for free or reduced-price lunches;

recent trends in enrollment growth; reading achievement of students.

plan was balancing the schools' percentages of students participating in free or reduced-price lunch

program.  The target was 40 percent, the percentage of Wake County's students who participated in the

lunch programs in 1999-00.  During the years of the new plan that are covered by our data, as many as

4,157 students were reassigned in a single year.  In more recent years not covered by our data, even larger

numbers have been reassigned: up to 11,000 in a single year.

A.  Practical Reassignment

If Wake County had merely reassigned nodes to balance schools' racial composition (up through

1999-00) or income composition (from 2000-01 onwards), its task would have been quite simple.  But, in

practice, when policy makers considered a node, their decision about  reassignment was greatly dictated

by school over- and undercrowding, existing bus routes that could be modified to link overcrowded to

undercrowded schools, construction projects that displaced existing students, and the advent of new

buildings.  The considerations were many because the Raleigh-Durham metropolitan area grew rapidly

throughout the period we study:  Wake County alone experienced enrollment growth of 44,718

students–a sixty percent increase–between 1990 and 2003.   Aligning students with available space and13

reasonably efficient bus routes was crucial; balancing schools' race or income composition was desirable

but not paramount.  In a typical year, it appears that only about 16 percent of reassignments were based

purely on balancing considerations.   Thus, students of the same race and income level, who attend the14

same school or schools with very similar student composition, do not have one uniform experience of

reassignment.  Some were reassigned.  Some remained where they were and experienced reassigned
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  Wake County has a system of magnet schools to which students can apply, but all such applications are15

submitted and approved or disapproved before reassignments are announced on May 15.  Thus, a family

that does not like its assignment cannot apply to a magnet school for the upcoming school year. 

Moreover, the magnet schools are meant primarily to help the district achieve racial (pre-2000) or income

(post-2000) balance, so a parent who wants to avoid his child being sent to a more balanced school cannot

generally achieve this by applying to a magnet school.  Students who select magnet schools are treated as

potentially endogenous movers, as are students who self-select into year-round schools.  Note that many

students are simply assigned to year-round school.

classmates. Some experienced no change (although they may well experience change in the future).

In Wake County, most families comply with reassignment partly because the district attempts to

run all of its schools well and partly because noncompliance is difficult.  Assignments are not announced

until May 15 of each year.  Parents then have a fortnight to submit a transfer request (an appeal of the

assignment), knowing that–if a transfer is approved–they will thereafter have to provide transportation to

the school themselves.  The only transfer requests that have a high probability of success are those in

which parents have picked an alternative school that is under-filled or whose balance is such that the

arrival of their child will help the school reach its target.   Wake County makes it hard for a parent to15

predict what the reassignment plan will be and take strategic steps in advance (such as by moving).  Node

maps are not published, and data on the characteristics of nodes that Wake County uses in the assignment

decision are not publically available.  While anyone can look up the current year school assignment for

any given address, parents cannot obtain a spreadsheet of addresses and assignments–even for the current

year, let alone for a sufficient number of previous years to conduct a proper analysis.  Each year's

preliminary and final assignment plan is removed from the internet when the official comment period is

over.  

For our purposes, the bottom line is as follows.  First, both before and after 2000-01, students

with the same characteristics who attended schools with similar race and income composition

characteristics might experience arbitrarily different treatments.  Indeed, we show below that, once we

condition on a student's race, ethnicity, lunch participation, and initial school and grade (all of which are

absorbed by the fixed effect in our analysis), the event of being reassigned appears to be quite random.  In
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  Weingarth (2005) contains considerable detail on the dataset.  It is also described in documents posted16

on the website of the North Carolina Education Research Data Center.

particular, we find that reassignment is not a function of a student's initial score.  Although arbitrary

assignment to treatment (conditional on a student's fixed characteristics) may annoy Wake County

parents, it is useful for econometric identification.  Second, such a large percentage of students comply

with their treatment that we can treat non-compliers as endogenous movers and still have ample variation

in peer groups due solely to reassignment.  Third, the majority of children (62.4 percent) in Wake County

experienced a change in peer composition purely because of reassignment.  Of these, 38 percent were

themselves reassigned and 62 percent were part of a cohort affected by other students' reassignment.

Lastly, a node's treatment over time tended to shift even if the node itself remained the same.  This was

partly due to the change in Wake County's desegregation policy, partly due to school renovation and the

addition of buildings, and partly due to the fact that changes elsewhere in the county might affect local

bus routes.  Because nodes' treatment changes over time, students who are untreated in one part of the

sample (for instance, earlier years) experience treatment in another part.  This helps to guarantee that the

control group is helpful for estimating the counterfactual–in other words, the grade-by-year effects,

school effects, and so on.  Also, the changing treatment of nodes makes families more likely to comply

with reassignment:  moving to an untreated node is no guarantee of remaining untreated.

B.  Data

We use data on third through eighth graders in Wake County from the 1994-95 through 2002-03

school years.  We are grateful to the North Carolina Education Research Data Center, whose staff

graciously provided data they had carefully compiled.    Our primary measure of achievement is a16

student's score on North Carolina' statewide end-of-grade tests.  The dataset includes measures of race,

gender, free and reduced-price lunch participation, and (rather unusually for administrative data) parents'
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  Prior to 1998-99, North Carolina did not record participation in free or reduced-price lunch in its state17

database.  This does not affect our analysis, for two reasons.  First, during the period in the which the

desegregation plan was based on lunch participation, we do have the measure.  Second, to the extent that

we need a measure for prior years, we backcast a student's lunch participation or predict it using his

parents' education.  Our backcast and predicted measure matches up well with school-level participation

data, which is available prior to 1998-99.

  North Carolina introduced new scales for math in 2000-01 and for reading in 2002-03.  We use the18

published conversion table between the old and new scales to put all scores into the old scales.

  Students who choose to attend a magnet school or who self-select into a year-round school are19

classified as endogenous movers.

education.17

We use a student's total (reading plus math) scale score.  This is simply because the results for

reading and math were very similar so that the total is an informative summary statistic.  We ensure that

the test scores are comparable over time for the purposes of analysis.  We do this by, first, using the same

official scale for all years, and, second, including grade times school year effects in all our estimations to

pick up idiosyncratic changes in the test or scoring.   We identify a student's actual classroom peers by18

identifying the group who share the same teacher code in the same cohort (grade, school, and school

year).   According to the North Carolina Education Research Data Center, these codes properly identify

classrooms with at least 95 percent accuracy.  The small degree of inaccuracy does not concern us

because it appears to be random measurement error and we are instrumenting for classroom composition

with cohort composition anyway.  There is negligible error in a child's recorded cohort.

We classify all year-to-year transitions for a student into:  staying, being reassigned by policy,

making a feeder school transition (this occurs when all students from a certain elementary school are

automatically "fed" into a certain middle school), or moving for a potentially endogenous reason.   Using19

these classifications, we construct an indicator of each student's simulated instrument cohort in each year. 

Remember that the simulated instrument cohort allows policy-based moves but disallows all potentially
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  Of potentially endogenous movers, we observe 92 percent both before and after the move because they20

move within North Carolina.  In any case, observing them before and after is not terribly important owing

to the instrumental variables strategy.

  The Wake County rules allow the authorities to consider students' prior achievement when making21

reassignment decisions.  Table 2 does not show, however, any evidence of such consideration.   (Indeed,

the point estimates suggest that, if anything, low achievers are less likely to be reassigned, which is the

opposite of what people commonly expect.)  We think it is likely that, at the node level, there is

insufficient persistent variation in achievement (conditional on everything else listed) for the authorities

to base their decisions upon it.

endogenous moves, thereby "keeping" movers with their prior cohort.20

Table 1 shows descriptive statistics for our data.  Note especially that the total test score has a

standard deviation of 24.4–this number will be useful for assessing the magnitude of our results.

The left-hand column of Table 2 shows the results of a linear probability regression.  It

demonstrates that, once we condition on a student's race, ethnicity, free or reduced-price lunch

participation, and initial school, experiencing a policy-driven change in one's peers is not statistically

significantly correlated with prior achievement or parents' education.  The right-hand column shows the

results from another linear probability regression, except that the dependent variable is having been

reassigned oneself.  The estimates indicate that, once we condition on the student characteristics listed

above, being reassigned is not statistically significantly correlated with prior achievement or parents'

education.  These findings suggest that the staff in charge of reassignment used the variables they were

supposed to consider (race, lunch participation, geography) but did not discriminate among students along

dimensions they were not supposed to consider.   As a result, it is reasonable to assume that treatment21

(experiencing a policy-driven change in one's cohort) was random conditional on a student's fixed

characteristics.

V.  Understanding the Structure of Peer Effects

In this section, we clarify which specifications embody peer effects well.  We consider peers'

achievement only.  That is, all of our explanatory variables are moments based on peers' initial
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 One problem we did not mention (because it is irrelevant when we use instrumental variables) is22

regression to the mean.  Thus, if a class does poorly one year because of some shock, its members can be

expected to do well the next year simply because they are returning to their true level of achievement. 

Such phenomena can cause least squares estimates, like the one shown, to be downward biased.

achievement.  In the next section, once we have settled on a specification that fits the achievement data

well, we shall add explanatory variables based on peers' race and ethnicity, lunch participation, and so on.

Before proceeding, it is useful to point out that all of the implied first stage regressions have very

ample explanatory power.  This should come as no surprise because the instruments are constructed to

capture all of the variation in the peer variables except the variation caused by potentially endogenous

moves.  The coefficient of interest in each implied first stage regression (the coefficient on the simulated

instrument corresponding to the dependent variable) is always estimated to be positive and is always

highly statistically significant.  The vast majority of such coefficients are about 0.8, although a few are as

low 0.25.  The vast majority of associated t-statistics are over 100, although a few are as low as 30.

A.  Specifications in which Peers have Homogeneous Treatment Effects

To facilitate comparisons with other research on peer effects, we estimate the Linear-in-Means

model, both by least squares and simulated instrumental variables.  Results are displayed in Table 3,

which also shows two other specifications estimated by simulated instrumental variables.  Although the

other two specifications allow for a variety of peer effects that the Linear-in-Means model does not, all

the specifications shown in Table 3 have one thing in common: they restrict peers to have homogeneous

treatment effects.  That is, each student affects all of his peers identically, regardless of how similar he is

to them initially.

We show ordinary least square results in the left-hand column, purely for interest.  They suggest

that a student's score is unaffected by the mean of his class's previous year test scores, controlling for

student and other fixed effects.  We have already mentioned that least squares estimates are highly

problematic, so we shall proceed without interpreting the estimate further.22

The simulated instrumental variables estimate of the Linear-in-Means model suggests that adding
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  That is, we computed percentiles of the countywide distribution of test scores for each grade and23

school year.  We compare students' scores to these percentiles.  Thus, the moments in question indicate

the percentage of students in the class who are low or high achievers by a standard that is fairly absolute

(certainly not closely related to the class's or school's own performance).

peers who raise mean achievement by one point raises a student's own achievement by about 0.25 points. 

This effect is statistically significant and demonstrates the utility of an empirical strategy that excludes

endogenous variation.  The estimated effect is also quite large, though well within the range of previous

estimates.  Given our earlier discussion, however, one hardly knows what to do with the number.  It

cannot be used as the undergirding for most models of choice and it is difficult to use it to evaluate Wake

County's desegregation policies (since all policies produce the same aggregate outcomes in the Linear-in-

Means world and there is no explicit social welfare function with which to value gains and losses among

students).

Because it is plausible that low-achieving and high-achieving students do not affect others purely

through their effect on the mean, we relax the Linear-in-Means specification to include three additional

moments: the shares of classmates with initial test scores in the bottom quartile, second quartile, and top

quartile of the countywide distribution.   (The share with initial scores in the third quartile is omitted for23

obvious reasons.)  The mean and the three other moments are instrumented with variables based on the

simulated instrument cohort.

The results are somewhat confusing.  It still appears that higher initial mean scores among

classmates raise a student's own score: a 1 point increase in the mean raises his own score by 0.35 points. 

Also, if the share of his class with score in the second quartile rises by 10 percent, his own score falls by

3.2 points (13 percent of a standard deviation).  The latter result in particular seems too large, and it is

also hard to reconcile with the remaining results:  the share of classmates with scores in the bottom

quartile has no effect and the share of classmates with scores in the top quartile has a negative and

statistically significant effect.  Specifically, if the share of a student's class with scores in the top quartile

rises by 10 percent, his own score falls by 1.3 points (5 percent of a standard deviation).  While it is
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possible to construct peer effect models that reconcile these odd results, one cannot do so with models in

which treatment effects are homogeneous–a restriction we have so far imposed.  For instance, the Linear-

in-Means, bad apple, and shining light model are all clearly rejected.  (We can reject the Linear-in-Means

model formally.  The  statistic on the test is 50.5 with a p-value less than 0.0000.)   The evidence is

also hard to reconcile with the Invidious Comparison model: while a greater share of very high achievers

has the expected negative effect, a greater share of very low achievers has no effect.  The findings are also

incompatible with the Rainbow model because that model suggests that adding students at both ends of

the distribution should raise everyone's performance.  

To drive home the point, we estimate an even more augmented specification, the estimates from

which are shown in the right-hand column of Table 3.  It includes, in addition to peers' initial mean test

score, the shares of classmates with initial test scores in each decile of the countywide distribution. (The

share with initial scores in the bottom decile is omitted, and we instrument for all the achievement

variables.)   We can discern no sensible pattern in the results.  A larger share of peers in second, seventh,

and eighth deciles apparently raises a student's performance, but the fourth decile has a (borderline

significant) negative effect.  The remaining coefficients are statistically insignificant, but even the relative

magnitudes and signs of the set of point estimates are difficult to align with one or more peer effect

models.  We again soundly reject the Linear-in-Means model.  The  statistic on the test is 84.2 with a

p-value less than 0.0000.  Overall, we conclude that the data provide little support for models in which

peers have homogeneous treatment effects.

B.  Specifications in which Peer Effects Depend on the Student's Own Achievement

We now turn to specifications in which we allow the effects of peers to vary with a student's own

initial achievement.  Specifically, we associate each student with his initial score's decile in the

countywide distribution of scores.  Indicators for each student's decile are fully interacted with the ten

variables representing the shares of classmates with initial test scores in each decile of the countywide

distribution.  Formally, the equation we estimate is:
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(4)

,

where  is an indicator for student i's test previous year score being in the bottom decile of the

countywide distribution and  is the mean of the same indicator for his classmates.  Keep in mind

that all of the achievement-based explanatory variables are instrumented.  For instance, the simulated

instrumental variable constructed for  is   .

Equation (4) is a very flexible functional form that can do a good job of representing the

Invidious Comparison model, the Boutique model, and the Single Crossing model.  The specification

cannot, however, represent the Focus, Rainbow or Subculture model well because each of these models

posits that the effect of a peer on another student is not merely a function of their (the twosome's)

characteristics, but also a function of the achievement distribution in the remainder of the class.

It is not elucidating to present one hundred coefficients in a table, so we plot them. Figure 1

shows them all, and Figure 2 is a close-up of sorts.  Note that the coefficients are identified only up to a

constant so that, while the units on the vertical axis are meaningful, the position of each line relative to

zero is not.  Readers should concentrate on the shape of each line as it proceeds from the left- to the right-

side of the figure.

  In Figure 1, the coefficients plotted on the white background (toward the middle of the figure)

tend to be statistically significantly different from zero at the 0.1 level (and at the 0.2 level, at a

minimum).  As we move out from the center of the figure, standard errors tend to grow.  This occurs

because there are many "experiments" in which a class receives a substantial boost in its share of peers

who are middling, but few experiments in which a class receives a substantial boost in its share of peers

who are very bottom or very top performers.  Nature does not distribute very bottom and very top
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performers in such a way that they arise in neat clusters associated with geographic nodes.  In the lightly

shaded areas on either side, the estimates are so noisy that they should be taken with a very generous

pinch of salt: their standard errors are typically three-quarters of the absolute value of the point estimate. 

In the deeply shaded regions on the outside of the figure, the estimates are very noisy: their standard

errors are as much as 2 times the absolute value of point estimate.  We show the estimates in the deeply

shaded areas for completeness only: readers should avoid anything resembling literal interpretation.  We

do not show the deeply shaded regions at all in Figure 2 or the subsequent figures.

Figure 1 includes a great many estimates, but some patterns are immediately discernible. 

Consider the line based on students who are themselves initially in the bottom decile.  Ignoring the

estimate in the deeply shaded regions, we see that bottom decile students receive the greatest benefit

when reassignment boosts the share of classmates in the second and third deciles.  A ten percentage point

increase in the share of peers who score at the 15  percentile generates 4.5 more points on the test thanth

the same size increase in the share of peers who score at the 85  decile.  4.5 points is 18.5 percent of ath

standard deviation.  At the other end of the spectrum, students who themselves are initially in the top

decile benefit most when reassignment boosts the share of classmates in the fifth through ninth deciles.  A

ten percentage point increase in the share of peers who score at the 85  percentile generates ten moreth

points on the test than does the same size increase in the share of peers who score at the 15  decile.  Tenth

points is 40 percent of a standard deviation.  Students who fall between the two ends of the spectrum have

lines that lie between the two extreme lines just described.  It is easier to see effects if we eliminate some

lines, and this is what we do in Figure 2.

Figure 2 shows that students who themselves initially score in the ninth decile exhibit much the

same pattern as students who initially score in the top decile: increases in the shares of high performing

peers are most beneficial.  The line, however, for students in the seventh decile (61  through 70st th

percentiles) is much flatter.  While it does peak at the 75  percentile, suggesting that raising the share ofth

such peers is most helpful, the difference between boosting peers at the 75  and 25  percentiles isth th
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  We did not go higher than  simply because not all students have an interaction term24

such that . 

negligible.  Similarly, for students in the third decile, boosting peers at the 25  percentile appears to beth

most helpful, but boosting peers at the 65  or 75  percentile is not much worse.  Oddly, all of the lines forth th

"interior" students exhibit a mild U-shape, suggesting that boosting the share of classmates who score

near the 50  percentile is least beneficial.  This pattern is hard to understand, especially for the fifth decileth

students who themselves score in this range.

On the whole, we see substantial support for the Boutique model in Figures 1 and 2.  Students

who themselves exhibit the extremes of initial achievement benefit from the (net) arrival of like scorers. 

A formal test of the Boutique model is that, for a student with a given level of initial achievement m, the

parameter  on the interaction term   should be increasing as the absolute value of the

difference falls.  We conduct this test for each level of student by seeing whether the coefficient

for which is greater than the coefficient for which .    We find that the Boutique24

models is supported (that is, the null is rejected) for the more extreme deciles: deciles 1, 2, 3, 8, 9, and 10.

The failure of the test for the interior deciles is a manifestation of the same phenomena that caused the U-

shape noted above.

We see little evidence for either the Shining Light or the Bad Apple model: a boost in the share of

very high or very low scorers has a mixed effect, not a uniform and disproportionate effect.

We also see little evidence for the Invidious Comparison model:  consider the lines for students

who initially score in the third, fifth, and seventh deciles.  They seem to benefit from boosts in the share

of both lower and higher scorers, whereas the Invidious Comparison model suggests that they should

benefit from lower scorers but slump when faced with higher scorers.  The Invidious Comparison model

is strongly rejected by the estimates for students whose initial scores are in the top three deciles.  The

model predicts, for instance, that for the students who initially score in the top decile. 

This null is rejected with a p-value less than 0.00, as is the corresponding null for students in the eighth
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and ninth deciles.

The Single Crossing model also gets little support.  While students who are themselves initially

high scoring do seem especially sensitive to the performance of their peers, so do students who are

themselves initially low scoring.  Insensitivity to peers is apparently most characteristic of students who

are themselves initially middling.  We tested the Single Crossing model formally by examining the

differences in the estimate of  for peers from the third-to-top decile (centered around the 75  percentile)th

and third-to-bottom decile (centered around the 25  percentile).  The Single Crossing model implies thatth

the difference  should be positive everywhere and highest for

students who themselves are from the top decile, next highest for students from the next decile, and so on. 

We reject this null with a p-value smaller than 0.00, which is unsurprisingly since the graphical evidence

shows that the difference mentioned above is negative for students who are initially low-achieving.

Figures 1 and 2 do not help us evaluate the remaining models because they require a specification

that allows each of the coefficients described above to vary with the distribution of achievement in the

rest of the class.  Such a specification tests the limits of our data: every relaxation of the functional form

cuts the number of "experiments" identifying each coefficient.  Nevertheless, some additional relaxation

seems warranted because puzzles remain.  The Boutique model, for instance, cannot explain the mild U-

shape described above:  the Boutique model suggests that students who are themselves near the 50 th

percentile should benefit especially from increases in the share of classmates in the middle deciles.

C.  Specifications in which Peer Effects Depend on a Student's Own Achievement and the Distribution of

Achievement in the Rest of His Class

We estimate a augmented version of the previous equation in which peer effects may differ

among classrooms of three types: classrooms with a low initial median score (in the bottom third of

classroom medians, around the 25  percentile of the student population score), classrooms with a mediumth

initial median score (in the middle third of classroom medians), and classrooms with a high initial median

score (in the top third of classroom medians, around the 75  percentile of the student population score). th
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This gives us the flexible equation:

(5)

.

We plot coefficient estimates from equation (5) in Figures 3 through 6.  Readers should avoid interpreting

individual point estimates in these figures.  Rather, they should look for patterns that appear relatively

consistently.  We admit that there is some "art" to interpreting these figures, primarily because, by

combining the peer effects models with sufficient dexterity, we might explain many patterns.   However,

we shall be mindful of our results from Table 3 and Figures 1 and 2, in which certain models have already

been rejected.

Examine Figure 3, which shows the effects of peers on students who themselves initially score in

the second decile.  When such students find themselves in classrooms where the median initial score is

high, they clearly benefit most from a boost in the share of classmates who score in the bottom few

deciles.  They benefit least from a boost in the share of classmates who score in the top few deciles.  (The

difference in benefit, for a ten percentage point increase in the classmate share, is 6 points or 25 percent

of a standard deviation.)  When, however, students who are themselves initially low scoring find

themselves in classrooms where the median initial score is low or medium, they seem to benefit about

equally from classmates of all achievement levels.

Figure 4 shows peer effects for students at the opposite end of the spectrum: those who initially

score in the top decile.  When such students find themselves in classrooms where the median initial score

is high, they benefit most from a boost in the share of classmates who score in the top few deciles.  They

benefit least from a boost in the share of classmates who score in bottom deciles.  (The difference in

benefit, for a ten percentage point increase in the classmate share, is 12 points or 50 percent of a standard
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deviation.)  In contrast, when students who are themselves initially high scoring find themselves in

classrooms where the median initial score is low, they benefit most from a boost in the share of

classmates who score around the 35  percentile–in other words, close to but a bit above class's median. th

Finally, when students who are themselves initially high scoring find themselves in classrooms where the

median initial score is medium, they benefit as much from a boost in the share of classmates who score

around the 45  or 55  percentile as from a boost in the share of classmates who score around the 85th th th

percentile.

What are we to make of Figures 3 and 4?  We can explain them with a combination of the

Boutique and Focus model along with a general monotonicity property that says that, all else equal, a

higher achieving peer is better than a lower achieving one.  With this combination, Figure 4 makes sense. 

If a student is initially very high achieving and his classroom has a high median, then he benefits most

from peers who are also very high achieving.  They, first, reinforce the critical mass at his "Boutique"

and, second, drag the median slightly in his direction.  This movement of the median means the class's

focus shifts slightly in his direction.  Yet, there is little chance of bimodality developing, which would

cause the "schizophrenia" the Focus model suggests is bad.  The same initially high scoring student in a

classroom with a low median benefits most from peers who on are his side of the median but not far from

the classroom median.  The new peers' advent moves the class's focus in his direction but they do not

generate bimodality.  In contrast, the advent of other anomalous, high achieving peers is a mixed blessing

to a high scoring student in a classroom with a low median.  The new peers reinforce his Boutique but, in

so doing, generate a distribution that is bimodal and, thus, anti-Focus.  A combination of the Boutique

and Focus models can also explain the intermediate line in Figure 4.

The Boutique and Focus models can also explain the initially low scoring students illustrated by

Figure 3, especially if we add the monotonicity property.  In a medium median classroom, the initially

low scoring student benefits from a boost in the share of students like him, but also in the share of

students at the median:  they reinforce classroom focus and are slightly better peers.  He benefits less, but
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not much less, from high-scoring than from middling peers.  This is presumably because monotonicity

makes up for the weakening of the low-scoring student's Boutique.  In short, the line is quite flat for

medium median classrooms.  The line is quite flat for low median classrooms, presumably because the

initially low scoring student benefits from other low scoring peers who reinforce his Boutique, from mid

scoring peers who pull the median in his direction and are slightly better peers, and from high scoring

peers whose quality as better peers makes up for their effect on classroom focus.  Finally, there is the

downward sloping line for high median classrooms.  It suggests that the initially low scoring student

benefits most from classmates drawn from the first few deciles, presumably because they greatly reinforce

his Boutique and move the median toward him.  He already has a sufficient number of higher scoring

peers not to benefit from the addition of others.

We will let the reader confirm for himself that the combination of Boutique, Focus, and

monotonicity can also explain Figures 5 and 6, which are intermediate cases.  Figure 5 plots estimated

coefficients for students who initially score in the fifth decile; Figure 7 does the same for students who

initially score in the eighth decile.

Figures 3 through 6 would be very difficult to reconcile with the Rainbow or Subculture models

because each of them implies that augmenting the classroom's focus (on at least some types of students) is

a bad.  We also see little support for the Bad Apple, Shining Light, or Invidious Comparison models,

which were not supported by the estimates shown in Figures 1 and 2 either.  The monotonicity property is

related to the Linear-in-Means and Single-Crossing models–suggesting that a basic notion on which they

are founded makes sense.  However, they are clearly rejected as standalone models of peer effects.

VI.  Do Peer Race, Ethnicity, or Income Matter?

It is far from obvious that, once we have properly accounted for the effects of peers' achievement,

peers' race, ethnicity, income, or other characteristics affect a student at all.  One hardly knows what to

make of statement like the following, quoted in a study of Wake County's desegregation policies:
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  Wake County Public School System, Evaluation and Research Department (1999), quoted in25

Silberman (2003).

[A] high concentration of low-income students . . .appears to have negative effects on

students, teachers and the school, and these effects extend beyond the effect of individual

students’ economic condition.25

Are concentrations of poverty bad, in and of themselves, or are they merely proxying for peer

achievement for which a researcher has taken insufficient account?  Put another way, we have seen that

the data consistently rejects the Linear-in-Means model as a standalone explanation of peer effects.  Thus,

researchers' common reliance on the Linear-in-Means model guarantees that any effects of peers that

operate non-linearly or through moments other than the mean become omitted variables.  These omitted

variables will make themselves felt through any available covariate that is correlated with them, and

peers' race and income are likely candidates for such covariates. 

Thus, we now add indicators of peers' race, ethnicity, income, and other characteristics to the

specification (equation (5)) and "run a horse race" to see whether the non-achievement variables matter. 

For this "horse race," it is useful that Wake County switched its reassignment policy in the middle of the

period covered by our data.  In the pre-2000 period, students disproportionately experienced

reassignment-driven changes in racial composition; in the post-2000 period, students disproportionately

experienced reassignment-driven changes in poverty composition.  This alteration in the predominant

type of "experiments" helps us to identify separately the effects of peers' race, income, and achievement.

The results of interest are shown in Table 4.   (We do not show the coefficients on peers'

achievement because they are largely unchanged, as will be fairly obvious after we discuss the coefficient

estimates for the newly introduced variables.)

The main message of Table 4 is that race, ethnicity, and income do not matter much once we have

accounted for the effects of peers' achievement.  Twenty-five of the thirty coefficients shown in Table 4

are not statistically significant from zero.  Moreover, the coefficients that are statistically significant have



30

magnitudes that are small relative to what would interest a policy maker or relative what to naive studies

(like the ones to which the quotation refers) suggest.  Consider the few coefficients that are statistically

significant.  If a student who is himself black and poor experiences a ten percent increase in the share of

his class that is black and poor, his achievement falls by 0.6 points (about 2.5 percent of a standard

deviation).  No other group of students, however, suffers a negative, statistically significant effect when

the share of their class that black and poor rises.  Indeed, even the point estimates were statistically

significant, they are either positive or of such small magnitudes that the effects would be trivial.

If a student who is himself Hispanic and poor experiences a ten percent increase in the share of

his class that is Hispanic and poor, his achievement falls by 1.3 points (about 5 percent of a standard

deviation).  In contrast, if a poor black student experiences a ten percent increase in the share of his class

that is Hispanic and poor, his achievement apparently rises by 0.8 points–about 4 percent of a standard

deviation.

Finally, a student who is himself white or Asian and non-poor sees his achievement rise by 0.08

points (0.3 percent of a standard deviation) if the share of his class that is black and non-poor rises by 10

percent.  He sees his achievement fall by 0.2 points (0.8 of a standard deviation) if the share of his class

that is white or Asian and poor rises by 10 percent.

In short, Table 4 suggests that concentrations of students who black and poor or Hispanic and

poor do have negative effects on achievement, but the impacts are small.  The vast majority of the

apparent impact of a concentration of racial minorities, ethnic minorities, or poor students is really the

effect of their achievement.  Put another way, if we see two schools with the same distribution of

achievement (not merely the same mean), we should expect their students' achievement to evolve

similarly in the future, even if the schools have quite different racial, ethnic, and income compositions. 

Of course, policy makers might still wish to equalize the two schools' racial, ethnic, and income

compositions for purely social reasons.

Table 4 suggests that Wake County's policy switch, evaluated as written, was (very slightly) good
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for students who were poor and black or Hispanic and was (very slightly) bad for students who were non-

poor and white or Asian.  The former result is because, with the policy change, poor black and poor

Hispanic students should have gained non-poor black and non-poor Hispanic peers and lost poor peers of

all races.  Since concentrations of poor blacks and poor Hispanics have a negative effect on achievement,

the overall impact is positive.  The latter result is because, with the policy change, non-poor white and

Asian students should have lost non-poor black peers (who are good for their achievement) and gained

poor white and Asian peers (who are bad for their achievement).  Nevertheless, the overall conclusion

should be that switching policies, per se, had little effect.

Our results suggest that greater effects were probably intentionally induced by reassignments that

shook up the distribution of peer achievement in schools.  For instance, our results suggest that

reassignments were beneficial if they created schools in which there was a critical mass of students at

each achievement level represented in the school.  On the other hand, reassignments were pernicious if

they created schools whose children have bimodal or simply very diffuse achievement distributions.

VII.  Other Extensions

A legitimate question to ask, at this stage, is what would have happened had we first controlled

for peers' race and then added peers' achievement.  Would we have rejected the Linear-in-Means model

and other homogeneous treatment models, such as the Bad Apple and Shining Light models?  Would we

have found little support for the Invidious Comparison and Rainbow models?  The answer is yes.  This is

easy enough to show.  In an appendix table, we replicate the tests shown in Table 3 with the change that

we control for peers' race as part of the base specification.  Our results are very similar to those in Table

3, which we used to demonstrate that all of the models mentioned above in this paragraph are implausible

(at least, as standalone models).

Another interesting question is whether students are differently affected by peers of their own

race or sex.  The simplest version of this question is whether the mean achievement of own-group
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students matters more.  We found evidence that own-race peers' mean achievement affects a student

more, especially for black and Hispanic students.  We also found weak evidence that own-sex peers' mean

achievement affects a student more.   Finally, we observe that female peers are more beneficial for

achievement than male peers even when we have accounted for achievement.   All of these findings

confirm the results of previous work by the author (Hoxby 2000), a study with an empirical strategy more

attuned to analyzing the effects of the racial and sex composition of peers.

We went further, however, and consider scenarios in which within-race peer effects are generally

stronger or different from between-race peer effects.  For instance, suppose that the Bad Apple model

holds within race, but not between races.  In this case, the arrival of white students who are very low

achievers might have a negative effect on the achievement of white students only.  If this were so, we

might see confusing or muted evidence and reject the Bad Apple model when, in fact, it does hold within

race.   In an appendix table, we replicate some of the tests shown in Table 3 with the change that we allow

effects to differ by the race of the student and examine the effect of the share of students in each quartile

by race.  We are not able to discern any systematic patterns, except for the finding that low achieving

black peers appear to be especially bad for the achievement of other black students who are initially low

achieving.  It should be noted, however, that interactions between race and achievement groups (quartiles,

deciles) produce results that are often highly imprecise.  Therefore, while we cannot conclude that there

within-race peer effects differ from peer effects in general, it is possible that they do and that we have

insufficient variation to discern the differences.

In addition to looking for effects of income, race, and sex, we investigated whether the

educational attainment of peers' parents mattered.  Rather unexpectedly, we did not obtain any evidence

that students whose parents are more educated make more beneficial peers.  We surmise that parents'

education does not have an independent effect once we have taken account of peers' achievement.
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VI.  Conclusions

Our most important findings are three.  First, certain very commonly employed models of peer

effects, such as the Linear-in-Means and Single-Crossing models, are rejected as standalone models.  In

other words, they do not sufficiently embody peer effects to be used, by themselves, to generate empirical

specifications.  Of course, because we find general support for the notion that higher achieving people are

better peers all else equal, the Linear-in-Means and Single-Crossing models may still inspire parts of an

adequate empirical specification.  Such a specification should also be able to embody other models of

peer effects, especially the Boutique and Focus models.

Second, our finding support for the Boutique and Focus models suggests that schools, colleges,

and workplaces should be wary of creating peer groups in which some people are isolated (in terms of

prior achievement, innate ability, or productivity).  However, they should also avoid creating critical mass

around a certain type of person if, by so doing, they generate a peer group that is bimodal or, more

generally, multimodal.  Some focus is good.  Our finding support for the Boutique and Focus models also

suggests that real-world stratification across schools, colleges, neighborhoods, workplaces, and

metropolitan areas is probably not generated by the Single-Crossing Model (the main appeal of which has

always been its mathematical elegance, anyway).  As a result, we may want to revisit models of school

choice, college choice, and urban economics that rely heavily on the Single-Crossing assumption.

Notice that our evidence does not suggest that complete segregation of people, by types, is

optimal.  This is because (a) people do appear to benefit from interacting with peers of a higher type and

(b) people who are themselves high types appear to receive sufficient benefit from interacting with peers a

bit below them that there is little reason to isolate them completely.  What our evidence does suggest is

that efforts to create interactions between lower and higher types ought to maintain continuity of types.

Finally, we find strong evidence that peers' race, ethnicity, and income have only very slight

effects once we have properly accounted for peers' achievement.  This suggests that fears of racial, ethnic,
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and economic desegregation are overblown; but it also suggests that policy makers who pin all their

hopes for achievement on such desegregation are unduly optimistic.  In conducting racial, ethnic, and

economic desegregation, policy makers ought to pay more attention to how they are affecting the

distribution of achievement within peer groups.  The distribution of achievement should probably be of

primary concern, not an unintended consequence.



35

References

Angrist, Joshua D. and Lang, Kevin. (2002). "How Important are Classroom Peer Effects? Evidence from

Boston's Metco Program." NBER Working Paper 9263.

Betts, Julian R. and Zau A. (2004). "Peer Groups and Academic Achievement: Panel Evidence from

Administrative Data."  Unpublished manuscript.

Benabou, Roland. (1996)  "Heterogeneity, Stratification, and Growth:  Macroeconomic Implications of

Community Structure and School Finance," American Economic Review, 86:3, pp. 584-609.

Boozer, Michael A. and Cacciola, S.E. (2001). "Inside the ‘Black Box’ of Project STAR: Estimation of

Peer Effects Using Experimental Data." Unpublished manuscript.

Brock, William A. and Durlauf, Steven N.  (2001) "Interactions-Based Models," Chapter 54 in eds. James

Heckman and Edward Leamer, Handbook of Econometrics, Volume 5. Amsterdam:  Elsevier

Science B.V.,  pp. 3297-3380.

Carrell, Scott E., Malmstrom, Frederick V., and West, James E.  (2005) "Peer Effects in Academic

Cheating," Unpublished manuscript.

Cascio, Elizabeth, Gordon, Nora, Lewis, Ethan, and Reber, Sarah J.  (2005) "Financial Incentives and the

Desegregation of Southern Public Schools," Unpublished manuscript.

Clotfelter, Charles T.  (2004)  After Brown: The Rise and Retreat of School Desegregation.  Princeton,

NJ:  Princeton University Press.

Epple, Dennis, Richard Romano, and Holger Sieg.  (2003).  "Peer Effects, Financial Aid, and Selection of

Students into Colleges,"  Journal of Applied Econometrics.

Glaeser, Edward L., Sacerdote, Bruce L., and Scheinkman, Jose A. (2003).  "The Social Multiplier,"

Journal of the European Economic Association, 1, 345 - 353.

Graham, Bryan S. (2004). "Identifying Social Interactions through Excess Variance Contrasts."

Unpublished manuscript.

Hoxby, Caroline M. (2000).  "Peer Effects in the Classroom: Learning from Gender and Race Variation,"

NBER Working Paper 7867.

Kremer, Michael.  (1993)  "The O-Ring Theory of Economic Development," Quarterly Journal of

Economics, August, pp. 551-576.

Kremer, Michael, and Levy, Daniel.  (2003).  "Peer Effects and Alcohol Use among College Students,"

Unpublished manuscript. 

Lazear, Edward.  (2001) “Education Production,” Quarterly Journal of Economics, Vol. 116.3 (August),

pp. 777-803.



36

Manski, Charles F. (1993). "Identification and Endogenous Social Effects: The Reflection Problem."

Review of Economic Studies, 60, 531-542.

Nechyba, Thomas. (1996)  "Public School Finance in a General Equilibrium Tiebout World:  Equilization

Programs, Peer Effects, and Vouchers." NBER Working Paper 5642.

Ogletree, Charles.  (2004)  All Deliberate Speed: Reflections on the First Half Century of Brown V. Board

of Education.  New York: W.W. Norton & Co.

Reber, Sarah J. (forthcoming) “Court-Ordered Desegregation: Successes and Failures in Integration Since

Brown,” Journal of Human Resources.

Sacerdote, Bruce L. (2001). "Peer Effects with Random Assignment: Results for Dartmouth Roomates."

Quarterly Journal of Economics, 116, 681-704.

Samms, Gavin. (2004)  "Desegregation, Peer Effects, and Achievement:  Evidence from a Policy

Experiment."  Unpublished manuscript.

Silberman, Todd.  (2003).  Wake County Schools:  A Question of Balance.  Unpublished monograph

sponsored by The Spencer Foundation, Raleigh, N.C.

Stinebrickner, Todd R. and Stinebrickner, Ralph.  (2001).  "Peer Effects Among Students from

Disadvantaged Backgrounds," University of Western Ontario, CIBC Human Capital and

Productivity Project Working Paper No 20013.

Vidgor, Jacob and Nechyba, Thomas. (2004). "Peer Effects in North Carolina Public Schools."

Unpublished manuscript.

Wake County Public School System, Evaluation and Research Department. (1999) "The Impact of

Poverty Upon Schools," Evaluation and Report Report No. 99.20, Marchs, Raleigh, N.C.

Weingarth, Gretchen.  (2005) Taking Race Out of the Equation: The Effect of Changing Classroom

Poverty Concentrations on Student Achievement.  Harvard University Senior Honors Thesis in

Economics.  Cambridge: Harvard University Archives.

Zimmerman, David J. (2003). "Peer Effects in Academic Outcomes: Evidence From a Natural

Experiment." The Review of Economics and Statistics, 85,1, 9–23.

Zimmerman, David J. and Winston, Gordon.  (2004).  "Peer Effects in Higher Education," in ed. Caroline

Hoxby, College Choices: The Economics of Where to Go, When to Go, and How to Pay for It. 

Chicago: University of Chicago Press.



33

Figure 1



34

Figure 2
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Figure 3

Figure 4
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Figure 5

Figure 6
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Table 1

Descriptive Statistics for the Wake County Dataset

Time-Constant Variables (one observation per student)a

Female 131138 0.489 0.500

Black 131138 0.262 0.440

White or Asian 131138 0.671 0.470

Hispanic, Mixed, or "Other Race" 131138 0.067 0.249

Parents' Education: Less than High School 131138 0.057 0.232

Parents' Education: High School Diploma or Equivalent 131138 0.255 0.436

Parents' Education: Some Postsecondary but No Degree 131138 0.140 0.347

Parents' Education: Two Year College 131138 0.364 0.481

Parents' Education: Four Year College 131138 0.169 0.375

Parents' Education: Graduate School 131138 0.015 0.122

Initial Total Scale Score (de-meaned by gradeAyear) 131138 -0.737 24.424b

Ever Experienced a Policy-Driven Change in Peer Composition 131138 0.624 0.484

Was Ever Reassigned by Policy 131138 0.239 0.426

Time-Varying Variables (multiple observations per student)c

Reading Scale Score (pre-2003 scale) 357358 157.2 10.3

Math Scale Score (pre-2001 scale) 357358 163.0 15.5

Total Scale Score (de-meaned by gradeAyear) 357358 0.000 23.081

Grade 357358 5.365 1.713

Spring of School Year 357358 1999 2

Size of Cohort 357358 228 128

Learning Disabled 357358 0.073 0.261

Other Disability (Individual Education Program) 357358 0.070 0.256

Participate in Free Lunch (1998-99 onwards) 237867 0.171 0.377

Participate in Reduced-Price Lunch (1998-99 onwards) 237867 0.048 0.214

Class's Previous Period Mean Reading Score 245780 154 9

Class's Previous Mean Math Score 245780 157 14

Share of Class with Previous Score between 1 and 10th Percentiles 245780 0.101 0.141

Share of Class with Previous Score between 10 and 20th Percentiles 245780 0.102 0.100

Share of Class with Previous Score between 20 and 30th Percentiles 245780 0.097 0.084

Share of Class with Previous Score between 30 and 40th Percentiles 245780 0.095 0.076

Share of Class with Previous Score between 40 and 50th Percentiles 245780 0.096 0.073

Share of Class with Previous Score between 50 and 60th Percentiles 245780 0.095 0.072

Share of Class with Previous Score between 60 and 70th Percentiles 245780 0.098 0.074

Share of Class with Previous Score between 70 and 80th Percentiles 245780 0.098 0.078

Share of Class with Previous Score between 80 and 90th Percentiles 245780 0.100 0.087

Share of Class with Previous Score between 90 and 100th Percentiles 245780 0.118 0.125

Simulated Instrument Cohort's Initial Mean Reading Score 245780 155 8

Simulated Instrument Cohort's Initial Mean Math Score 245780 159 12

Share of Simulated Cohort with Initial Score between 1 and 10th Percentiles 245780 0.120 0.075

Share of Simulated Cohort with Initial Score between 10 and 20th Percentiles 245780 0.104 0.051

Share of Simulated Cohort with Initial Score between 20 and 30th Percentiles 245780 0.097 0.039

Share of Simulated Cohort with Initial Score between 30 and 40th Percentiles 245780 0.093 0.038

Share of Simulated Cohort with Initial Score between 40 and 50th Percentiles 245780 0.093 0.034

Share of Simulated Cohort with Initial Score between 50 and 60th Percentiles 245780 0.095 0.036

Share of Simulated Cohort with Initial Score between 60 and 70th Percentiles 245780 0.095 0.034

Share of Simulated Cohort with Initial Score between 70 and 80th Percentiles 245780 0.096 0.038

Share of Simulated Cohort with Initial Score between 80 and 90th Percentiles 245780 0.097 0.048

Share of Simulated Cohort with Initial Score between 90 and 100th Percentiles 245780 0.115 0.073

table notes may be found on the next page
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Table 1

Descriptive Statistics for the Wake County Dataset

Notes:

 A student is included in the dataset if we ever observe his or her end-of-grade test scores.a

 The demeaned total scale scores are the residuals from a linear regressions of students' scale scores on anb

exhaustive set of grade-by-school year indicators.

 We observe 64,785 in one year only; 45,950 students in two years; 57,702 in three; 43,336 in four; 46,540 in five,c

106,248 in six; 7,364 in seven; and 504 in eight years.  These numbers include students who have missing test

scores in one or more years.  A student who is making his first appearance in the dataset has a missing observation

for the class and simulated cohort variables.  In the analyses, we impute free and reduced-lunch status for the school

years before 1998-99 by backcasting a student's later status and filling in the remaining missing observations using a

prediction based on parents' education.

Source: Authors' calculations based on Wake County data from the North Carolina Education Research Data Center.
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Table 2

Tests of Whether Experiencing Policy-Driven Changes in Peers is a Function of Student's Own Characteristics

(apart from race, free or reduced-price lunch, and other factors considered in reassignment)

Dependent Variable

Experienced a Policy-Driven

Change in Own Cohort

Reassigned

Initial Test Score (total scale score de-meaned by gradeAyear) 1.33E-05

(1.11E-05)

-3.10E-05

(3.23E-05)

Parents' Education: Less than High School 0.0032

(0.0137)

-0.0317

(0.0484)

Parents' Education: High School Diploma or Equivalent 0.0028

(0.0137)

-0.0283

(0.0484)

Parents' Education: Some Postsecondary but No Degree 0.0026

(0.0137)

-0.0320

(0.0484)

Parents' Education: Two Year College 0.0024

(0.0137)

-0.0232

(0.0484)

Parents' Education: Four Year College 0.0028

(0.0138)

-0.0193

(0.0487)

Parents' Education: Graduate School 0.0023

(0.0137)

-0.0293

(0.0484)

Race and Ethnicity Indicators yes yes

Free and Reduced-Price Lunch Indicators yes yes

Grade-by-School Year Effects yes yes

Initial School Effects yes yes

Notes: The table shows estimated coefficients from two linear probability models with the dependent variables

listed.  Standard errors are in parentheses.  The idea is to test whether being "treated" with policy-driven changes in

peers is a function of variables other than those explicitly considered by the reassignment authorities.  If we were to

find evidence that the authorities were discriminating among students (with regard to reassignment) along

dimensions they were not supposed to consider, it would suggest that treatment was not random conditional on a

student's fixed characteristics.  For descriptive statistics on the variables and data source, see Table 1.  
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Table 3

Effects of Peers on Student's Own Score,

Linear-in-Means Specification and Other Homogeneous Treatment Effect Specifications

Dependent Variable: Student's Own Test Scorea

Least squares Simulated instrumental variables (simulated cohort)c

Class's initial mean test score -0.002b

(0.002)

0.254

(0.092)

0.351

(0.115)

0.348

(0.135)

Share of class with initial test

score below 25  percentileth b

-1.958

(4.771)

Share of class with initial test

score 25  & 50  percentilesth th b

-32.067

(5.700)

Share of class with initial test

score above 75  percentileth b

-13.499

(3.649)

Share of class with initial test

score 10  & 20  percentilesth th b

21.248

(11.537)

Share of class with initial test

score 20  & 30  percentilesth th b

0.912

(6.143)

Share of class with initial test

score 30  & 40  percentilesth th b

-18.260

(13.943)

Share of class with initial test

score 40  & 50  percentilesth th b

-7.595

(10.983)

Share of class with initial test

score 50  & 60  percentilesth th b

11.043

(11.545)

Share of class with initial test

score 60  & 70  percentilesth th b

18.179

(11.947)

Share of class with initial test

score 70  & 80  percentilesth th b

24.666

(10.109)

Share of class with initial test

score 80  & 90  percentilesth th b

3.692

(9.668)

Share of class with initial test

score above 90  percentileth b

-7.907

(10.001)

Grade-by-school year effects yes yes yes yes

School Effects yes yes yes yes

Student Effects yes yes yes yes

Table notes continue on next page.
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Table 3

Effects of Peers on Student's Own Score,

Linear-in-Means Specification and Other Homogeneous Treatment Effect Specifications

Dependent Variable: Student's Own Test Scorea

Notes:

 Student's test score is the sum of his math scale score and reading scale score.a

 Class is always class excluding student himself.  Similarly, cohort is always cohort excluding student himself.  Ab

cohort is a school by grade by school year group of students–for instance, third graders in school X in the 1999-

00 school year.

 The simulated cohort is the cohort the student would have experienced if reassignments (only) had taken placec

but all potentially endogenous peer moves were disallowed.  See text for additional detail.

Additional Notes: The table shows estimated coefficients from linear regressions and instrumental variables

regressions with the dependent variables listed.  Standard errors are in parentheses.  For descriptive statistics on

the variables and data source, see Table 1.  



Table 4

Effects of Peers' Race, Income, and Other Characteristics on Student's Test Score,

(peers' achievement is included via the heterogeneous treatment effect specification: equation (4) by class's median score)

Dependent Variable: Test Score  of a Student who is...a

Black and

Poor

Black and

Non-Poor

Hispanic  andc

Poor

Hispanic  andc

Non-Poor

White and

Poor

White and

Non-Poor

 Share of class that is black and poor -6.127b

(1.464)

-0.364

(0.856)

1.979

(2.944)

-0.469

(2.630)

2.769

(2.126)

0.634

(0.477)

Share of class that is black and non-poor -0.778b

(1.011)

-0.382

(0.487)

0.879

(2.289)

-1.381

(1.751)

-1.439

(1.853)

0.772

(0.337)

Share of class that is Hispanic  and poor 8.129c b

(3.757)

3.104

(2.889)

-13.311

(8.410)

-6.598

(7.012)

-3.962

(5.977)

0.020

(1.431)

Share of class that is Hispanic  and non-poor 1.487c b

(6.207)

1.836

(3.744)

11.156

(11.218)

4.741

(9.817)

-4.377

(9.222)

0.838

(1.648)

Share of class that is white or Asian and poor -0.235b

(2.843)

-0.554

(2.440)

5.258

(6.837)

2.701

(6.272)

-1.506

(4.196)

-2.117

(1.234)

Peers' achievement, heterogeneous treatment effect

specification: equation (4) by class's median score

yes yes yes yes yes yes

Grade-by-school year effects yes yes yes yes yes yes

School Effects yes yes yes yes yes yes

Student Effects yes yes yes yes yes yes

 Student's test score is the sum of his math scale score and reading scale score.a

 Class is always class excluding student himself.  Similarly, cohort is always cohort excluding student himself.  A cohort is a school by grade by school yearb

group of students–for instance, third graders in school X in the 1999-00 school year.

 "Hispanic" is actually Hispanic ethnicity, mixed race, or other race.c

Notes: The table shows estimated coefficients from simulated instrumental variables regressions with the dependent variables listed.  Standard errors are in

parentheses.   The simulated instruments are based on the cohort the student would have experienced if reassignments (only) had taken place but all

potentially endogenous peer moves were disallowed.  See text for additional detail. For descriptive statistics on the variables and data source, see Table 1.  




